̽»¨¾«Ñ¡

Circuits controlling Action and their Evolution – Sten Grillner group

Our main aim is to understand the cellular bases of motor behaviour with a focus on the mechanisms underlying selection of behavior and the neural bases of in particular locomotion.

Photo of the lamprey, which is one of the oldest groups of extant vertebrates
Illustration: Sten Grillner

Research focus

This requires a detailed knowledge of which nerve cells take part, how they talk to each other through synaptic interaction and an understanding of the intrinsic function of these networks.

Essentially our research extends from ion channels and synapses to network mechanisms and behaviour utilising a multitude of techniques from patch clamp, tract tracing and cellular imaging to modelling and studies of behaviour. We utilise preferentially the lamprey as model organism.

We have been able to successfully model, based on detailed cellular knowledge, the networks responsible for the command and pattern generating systems for locomotion including steering and posture.

Our work continues with several foci including the role of the pallium/cortex, basal ganglia for selection of different patterns of motor behaviour, optic tectum for steering and eye motor coordination, the physiological role of different modulator systems acting through the spinal networks, and different ion channel subtypes contributing to neuronal function.

Our recent findings have shown that the lamprey forebrain has all components of the mammalian forebrain – a finding that has radically changed the view on the evolutionary origin of the vertebrate forebrain. The basic organisation had evolved 560 rather than 300 million years ago as previously believed.

The projects are supported by The Swedish Research Council, EU () and ̽»¨¾«Ñ¡.

Evolutionary conservation of the lamprey forebrain

Cortex/pallium is three-layered with the same efferent projection pattern to the brainstem-spinal cord as in mammals.

The lamprey pallium/cortex is three-layered with an inner and outer granular layer and a molecular layer. The GABAergic cells are most abundant in the inner granular layer. Phylogenetically, a layered pallium/cortex has been demonstrated in mammals, birds, reptiles and the lamprey.

Cortex/pallium is three-layered with the same efferent projection pattern to the brainstem-spinal cord as in mammals
Illustration: Sten Grillner

Publications

  1. Suryanarayana SM, Robertson B, Grillner S. (2022)  Philos Trans R Soc Lond B Biol Sci 377(1844):20200521
  2. Suryanarayana SM, Pérez-Fernández J, Robertson B, Grillner S. (2021)  Brain Behav Evol. 30:1-16
  3. Suryanarayana SM, Robertson B, Wallén P, Grillner S (2017) Curr Biol 27:1-14.
  4. Ocana F, Suryanarayana SM, Saitoh K, Kardamakis AA, Capantini L, Robertson B, Grillner S. (2015) Curr Biol 25:1-11

Sensory representation in the lamprey pallium/cortex.

Visual, somatosensory and motor areas in the dorsal pallium and olfactory representation in the ventral pallium are a general and common schema of vertebrate pallial organisation. 

Illustration of sensory representation in the lamprey pallium/cortex
Illustration: Sten Grillner

a. Summarising schematic of the lamprey dorsal pallium, showing retinotopic visual areas, somatosensory areas and motor areas, as well as the retinal, trigeminal and dorsal column nucleus afferents relayed via distinct subpopulations of thalamic neurons.
b. The olfactory system in lamprey resembles that of mammals in many respects with a dual efferent system conveyed via tufted- and mitral-like cells. The latter target the olfactory cortex located in the ventral pallium, whereas the former target a separate limited region, the dmtn (dorsomedial telencephalic nucleus). The mitral-like (magenta) and tufted-like (blue) cells display different morphology.

Publications

  1. Suryanarayana SM, Pérez-Fernández J, Robertson B, Grillner S. (2021) Cell Rep. 34:108596
  2. Suryanarayana SM, Pérez-Fernández J, Robertson B, Grillner S. (2020) Nat Ecol Evol. 4:639-651

The lamprey basal ganglia and the dopamine system is conserved

The organisation of the basal ganglia including the dopamine system is virtually identical throughout vertebrate phylogeny – from lamprey to primates. This applies to the overall neural organisation, transmitters, peptides, synaptic connectivity and expression of ion channels.

Illustration showing that the lamprey basal ganglia and dopamine system are conserved
Schematic of the direct and indirect pathways of the basal ganglia. Illustration: Sten Grillner

The striatum consists of GABAergic neurons as do globus pallidus externa (GPe), globus pallidus interna (GPi) and substantia nigra pars reticulata (SNr). SNr and GPi represent the output level of the basal ganglia, which project via different subpopulations of neurons to the optic tectum (superior colliculus), the mesencephalic (MLR) and diencephalic (DLR) locomotor command regions and additional brainstem motor centres, and also back to thalamus with efference copies of information sent to the brainstem. The indirect loop is represented by the GPe, the subthalamic nucleus (STN) and the output level (SNr/GPi) — the net effect being an enhancement of activity in these nuclei. The striatal neurons of the direct pathway to SNr/GPi express the dopamine D1 receptor (D1) and substance P (SP), while the indirect pathway neurons in striatum express the dopamine D2 receptor (D2) and enkephalin (Enk). Also indicated is the dopamine input from the substantia nigra pars compacta (SNc, green) to striatum and brainstem centres.

Publications

  1. Grillner S, Robertson B, Kotaleski JH. (2020) Compr Physiol. 10:1241-1275
  2. Grillner S and Robertson B. (2016) Curr Biol, 26: R1088-1100
  3. Pérez-Fernández J, Kardamakis AA, Suzuki DG, Robertson B, Grillner S. (2017) Neuron 96:910-924.e5.
  4. Stephenson-Jones M, Samuelsson E, Ericsson J, Robertson B and Grillner S (2011) Curr. Biol. 21:1081-91

The interaction between the forebrain and the optic tectum

The optic tectum contains motor circuits for the control of eye and orienting/evasive movements and receives visual input arranged in a retinotopic map. The optic tectum is controlled from both the basal ganglia and cortex/pallium. We have used an isolated eye-brain preparation to allow for a detailed analysis.

The interaction between the forebrain and the optic tectum
Illustration: Sten Grillner

Publications

  1. Isa T, Marquez-Legorreta E, Grillner S, Scott EK (2021)  Curr Biol 31(11):R741-R762
  2. Pérez-Fernández J, Kardamakis AA, Suzuki DG, Robertson B, Grillner S. (2017) Neuron 96:1-15.
  3. Kardamakis A, Pérez-Fernández J, Grillner S. (2016) ELife pii: e16472. doi: 10.7554/eLife.16472.
  4. Kardamakis AA, Saitoh K. and Grillner S. (2015) Proc Natl Acad Sci USA E1956-65.

Modelling, the neural control of action

The mechanisms underlying the operation of the forebrain and midbrain in action selection are being investigated through detailed modelling based on experimental data, on the systems level as well as on the cellular and subcellular levels.

Illustration of the locomotor network of the lamprey
Locomotor network of the lamprey. Illustration: Sten Grillner

Locomotor network of the lamprey. Left: Schematic representation of the forebrain, brainstem and spinal components of the neural circuitry generates rhythmic locomotor activity. Middle: Neuron model simulation using Hodgkin-Huxley formalism of the action potential with fast and slow afterhyperpolarisation (AHP) and synaptic properties. Right: Network model simulation of rhythmic, alternating activity in the spinal segmental network.

Diagramme/illustration of a simulation of the neural network in the striatum
Simulation of the neural network in the striatum. Illustration: Sten Grillner.

Network simulation of 10,000 neurons. (A) The activity of the network is shown in the form of a raster plot (Bottom) and spike histogram (Top). (B) Example traces of each cell type in the network are shown. The network is driven with cortical and thalamic input and modulated by dopamine, as indicated at the Top of the figure and the shaded areas (in A and B, respectively). The three inputs represent 1) baseline activation of cortical and thalamic input (thal+crtx baseline), 2) a cortical command signal (crtx cmd), during which the cortical activation is increased (given to all cells except the ChINs), and 3) a dopaminergic modulation signal that acts on conductances in accordance.

Publications

  1. Frost Nylén J, Carannante I, Grillner S, Hellgren Kotaleski J. (2021) Eur J Neurosci. 53:2135-2148
  2. Hjorth JJJ, Kozlov A, Carannante I, Frost Nylén J, Lindroos R, Johansson Y, Tokarska A, Dorst MC, Suryanarayana SM, Silberberg G, Hellgren Kotaleski J, Grillner S. (2020) Proc Natl Acad Sci U S A. 117:9554-9565
  3. Suryanarayana SM, Hellgren Kotaleski J, Grillner S, Gurney KN. (2019) Neural Networks 109:113-36
  4. Lindroos R, Dorst MC, Du K, Filipović M, Keller D, Ketzef M, Kozlov AK, Kumar A, Lindahl M, Nair AG, Pérez-Fernández J, Grillner S, Silberberg G, Hellgren Kotaleski J. (2018) Front Neural Circuits 12:3. doi: 10.3389/fncir.2018.00003. eCollection.
  5. Kozlov A, Kardamakis A, Hellgren Kotaleski J, Grillner S (2014) Proc Natl Acad Sci USA 111:3591-6
  6. Kozlov A, Huss M, Lansner A, Hellgren Kotaleski J, Grillner S (2009) Proc Natl Acad Sci USA 106:20027-32
  7. Grillner S, Cangiano L, Hu G, Thompson R, Hill R, Wallén P (2000) Brain Res 886:224-36.

The enigmatic cerebrospinal fluid-contacting neurons sense deviations from normal pH at the central canal and in hypothalamus

Illustration: Sten Grillner

Both spinal and hypothalamic cerebrospinal fluid-contacting (CSF-c) neurons serve as pH sensors, thereby providing a novel homeostatic module for the regulation of pH in the CNS. In the spinal cord, acidic pH is mediated by the ASIC3 and alkaline pH via PKD2L1 channels, whereas in hypothalamus the acidic response is mediated via ASIC3 and alkaline pH via connexin hemichannels.

Publications

  1. Jalalvand E, Alvelid J, Coceano G, Edwards S, Robertson B, Grillner S, Testa I. (2022)  Elife Feb 1;;11:e73114.
  2. Jalalvand E, Robertson B, Tostivint H, Wallén P, Grillner S. (2018) J Neurosci. 38:7713-24.
  3. Jalalvand E, Robertson B, Wallén P, Grillner S. (2016) Nature Commun 7:10002. doi: 10.1038/ncomms10002.

Publications

collage of publidation covers

List of selected publications


Zhang Y, He G, Ma L, Liu X, Hjorth JJJ, Kozlov A, He Y, Zhang S, Kotaleski JH, Tian Y, Grillner S, Du K, Huang T
Nat Commun 2023 Sep;14(1):5798


Frost-Nylén J, Thompson WS, Robertson B, Grillner S
Curr Neuropharmacol 2023 Aug;():


Wibble T, Pansell T, Grillner S, Pérez-Fernández J
Nat Commun 2022 08;13(1):4699


Jalalvand E, Alvelid J, Coceano G, Edwards S, Robertson B, Grillner S, Testa I
Elife 2022 02;11():


Suryanarayana SM, Robertson B, Grillner S
Philos Trans R Soc Lond B Biol Sci 2022 02;377(1844):20200521


Frost Nylen J, Hjorth JJJ, Grillner S, Hellgren Kotaleski J
Front Neural Circuits 2021 ;15():748989


Grillner S
Curr Opin Neurobiol 2021 12;71():11-18


Suryanarayana SM, Pérez-Fernández J, Robertson B, Grillner S
Brain Behav Evol 2021 Jun;():1-16


Isa T, Marquez-Legorreta E, Grillner S, Scott EK
Curr Biol 2021 06;31(11):R741-R762


Grillner S, Kozlov A
Int J Mol Sci 2021 May;22(11):


Grillner S, Thompson WS
Neuron 2021 05;109(10):1587-1589


Suryanarayana SM, Pérez-Fernández J, Robertson B, Grillner S
Cell Rep 2021 Jan;34(1):108596


Grillner S, Robertson B, Kotaleski JH
Compr Physiol 2020 09;10(4):1241-1275


Frost Nylén J, Carannante I, Grillner S, Hellgren Kotaleski J
Eur J Neurosci 2021 Apr;53(7):2135-2148


Hjorth JJJ, Kozlov A, Carannante I, Frost Nylén J, Lindroos R, Johansson Y, Tokarska A, Dorst MC, Suryanarayana SM, Silberberg G, Hellgren Kotaleski J, Grillner S
Proc Natl Acad Sci U S A 2020 04;117(17):9554-9565


Suryanarayana SM, Pérez-Fernández J, Robertson B, Grillner S
Nat Ecol Evol 2020 Apr;4(4):639-651


Grillner S, El Manira A
Physiol. Rev. 2020 01;100(1):271-320


Suzuki DG, Pérez-Fernández J, Wibble T, Kardamakis AA, Grillner S
Proc. Natl. Acad. Sci. U.S.A. 2019 07;116(30):15272-15281


von Twickel A, Kowatschew D, Saltürk M, Schauer M, Robertson B, Korsching S, et al
Curr. Biol. 2019 Feb;29(4):677-685.e6


Suryanarayana SM, Hellgren Kotaleski J, Grillner S, Gurney KN
Neural Netw 2019 Jan;109():113-136


Jalalvand E, Robertson B, Tostivint H, Löw P, Wallén P, Grillner S
J. Neurosci. 2018 Aug;38(35):7713-7724


Grillner S
Curr. Biol. 2018 02;28(4):R162-R164


Suzuki DG, Grillner S
Biol Rev Camb Philos Soc 2018 08;93(3):1461-1477


Pérez-Fernández J, Kardamakis AA, Suzuki DG, Robertson B, Grillner S
Neuron 2017 Nov;96(4):910-924.e5


Suryanarayana SM, Robertson B, Wallén P, Grillner S
Curr. Biol. 2017 Nov;27(21):3264-3277.e5


Capantini L, von Twickel A, Robertson B, Grillner S
J. Comp. Neurol. 2017 Mar;525(4):753-772


Grillner S, Robertson B
Curr. Biol. 2016 10;26(20):R1088-R1100


Kardamakis AA, Pérez-Fernández J, Grillner S
Elife 2016 09;5():


Jalalvand E, Robertson B, Tostivint H, Wallén P, Grillner S
Curr. Biol. 2016 05;26(10):1346-51


Jalalvand E, Robertson B, Wallén P, Grillner S
Nat Commun 2016 Jan;7():10002


Kardamakis AA, Saitoh K, Grillner S
Proc. Natl. Acad. Sci. U.S.A. 2015 Apr;112(15):E1956-65


Pérez-Fernández J, Stephenson-Jones M, Suryanarayana SM, Robertson B, Grillner S
J. Comp. Neurol. 2014 Dec;522(17):3775-94


Grillner S
Neuron 2014 Jun;82(6):1209-11


Kozlov AK, Kardamakis AA, Hellgren Kotaleski J, Grillner S
Proc. Natl. Acad. Sci. U.S.A. 2014 Mar;111(9):3591-6


Stephenson-Jones M, Kardamakis AA, Robertson B, Grillner S
Proc. Natl. Acad. Sci. U.S.A. 2013 Sep;110(38):E3670-9


Stephenson-Jones M, Samuelsson E, Ericsson J, Robertson B, Grillner S
Curr. Biol. 2011 Jul;21(13):1081-91

Complete list of publications

Find on PubMed

Staff and contact

Group leader

All members of the group

Contact and visit us

Postal address

Department of Neuroscience
Attn: Sten Grillner
̽»¨¾«Ñ¡, SE-171 77 Stockholm

Visiting address (visitors, couriers, etc.)

̽»¨¾«Ñ¡, Biomedicum, 4B
Solnavägen 9, SE-171 65 Solna

Delivery address (goods, parcels, etc.)

Tomtebodavägen 16, SE-171 65 Solna

Map to Biomedicum, Solnavägen 9, Solna

News archive

Grillner newslist 5 compact