Our Research
Genetic mechanisms controlling the emergence of higher cognitive function
Ever wondered why it might be a bad idea to lend your car to a teenager? Why do many forms of neuropsychiatric disorders including Schizophrenia, depression and bipolar-disorder have a late onset, typically late teens - early twenties? The goal of our lab is to study the cellular- and network-changes that occur after birth throughout to adulthood and which genetic programs that control these changes. We use our cell type-specific knowledge to further our understanding of genetically complex disorders with a focus on Schizophrenia.
Neural diversity 鈥 function
Since the days of Ramon y Cajal we have known that the forebrain inhibitory system exhibits a stunning diversity. A major research effort has gone into characterizing the morphology, marker expression and electrophysiological properties of the interneurons (see ). With modern genetics we are starting to get a molecular handle on this diversity in order to functionally target individual cell classes with agents revealing their connectivity as well as either driving their activity or silencing them. We have recently identified a number of novel classes of interneurons and are studying their role in the local and long-range circuitry.
Neural diversity 鈥 stability
Knowing the transcriptional state of cells gives many clues how cell classes are related to each other but even with state of the art techniques the data remains as 鈥渟napshots鈥 of individual cells and does not tell us how these profiles can change over time. We are interested in what aspects of cell transcription and function are stable over time and which parameter are variable in response to the environment of the cells.
More information at .