In the Furlan lab we use transcriptomics, circuit-tracing methods and functional neural manipulation (i.e. opto- and chemo genetics) to identify and characterize the central and peripheral circuits through which the brain and the organs “talk”. Our goal is to understand how the brain and the body work together to regulate critical physiological processes, with a focus on weight regulation and obesity (see schematic).
Obesity is one of the most common metabolic diseases in the world, becoming increasingly more common in both developed and developing countries. Its comorbidities (e.g. hypertension, diabetes, cancer) are a leading cause of premature death and a major economic burden. Despite this, our understanding of the disease and ability to treat it are limited, with few interventions available and many not effective in producing lasting results.
The failures of current obesity therapies aimed at reducing adiposity (white adipose tissue excess) via changes in life-style and diet, suggest that the disease is likely not caused uniquely by behavior (e.g. overeating) or genetic factors. Our hypothesis, supported by a growing body of evidence, is that pathological weight gain causes and is maintained by persistent changes in brain circuitry. The Furlan lab focuses on building a better understanding of body-brain neuronal circuits and the pattern of their dysregulation, providing insights that can inform novel approaches to and new treatments against obesity and the metabolic syndrome.
For information about ongoing research projects, please mail Dr. Furlan at alessandro.furlan@ki.se
Zhang X, Guan W, Yang T, Furlan A, Xiao X, Yu K, An X, Galbavy W, Ramakrishnan C, Deisseroth K, Ritola K, Hantman A, He M, Josh Huang Z, Li B
Nat Neurosci 2021 11;24(11):1586-1600
Xiao X, Deng H#, Furlan A#, Yang T, Zhang X, Hwang GR, Tucciarone J, Wu P, He M, Palaniswamy R, Ramakrishnan C, Ritola K, Hantman A, Deisseroth K, Osten P, Huang ZJ, Li B
Cell 2020 10;183(1):211-227.e20
Stephenson-Jones M, Bravo-Rivera C, Ahrens S, Furlan A, Xiao X, Fernandes-Henriques C, Li B
Neuron 2020 03;105(5):921-933.e5
̽ѡ
Department of Neuroscience
171 77 Stockholm
̽ѡ
Biomedicum
Solnavägen 9
171 65 Solna
Biomedicum
Tomtebodavägen 16
171 65 Solna
We are constantly looking for doctoral and postdoctoral candidates interested in joining the group. Prior experience working with mice, and familiarity with stereotaxic surgery, imaging, and optogenetics are a plus.
Please send your cover letter and your CV, inclusive of 2-3 references to: alessandro.furlan@ki.se